Earning Income

Relating Units of Time

1. Which time relationship can you use to solve each problem?
a) All last year Tony worked part time and earned \$15 000. How much did he earn per month? \qquad
b) All last year Eve worked full time and earned $\$ 62400$.

How much did she earn per week? \qquad
c) Last week Richard worked 4 h and 30 min each day for 5 days. He earned \$20/h (which means $\$ 20$ per hour).
How much did he earn last week? \qquad
2. Solve each problem in Question 1.

Show your work and write a concluding statement.
a)
b)
c)

Working with Percents

Percent means "out of 100. " 82 of the 100 squares in this grid are shaded, so 82% of the grid is shaded. 18 of the 100 squares are unshaded, so 18% of the grid is unshaded.
You can express a percent as a fraction or a decimal.

$82 \%=\frac{82}{100}$ or 0.82

$18 \%=\frac{18}{100}$ or 0.18

1 year $=52$ weeks
1 year $=12$ months
1 hour $=60$ minutes
1 week = 7 days
3. Write the percent of each grid that is shaded and unshaded. Then express each answer as a decimal.
a)

shaded: \qquad
unshaded: \qquad
b)

shaded:
unshaded: \qquad
4. The questions on a test are worth 100 marks.

A bonus question is worth 5 marks.
Is it possible to get more than 100% on the test?
Explain your thinking.
\qquad
\qquad
5. Express each percent as a decimal.
a) $27 \%=$ \qquad d) $11.9 \%=$ \qquad
b) $2 \%=$ \qquad e) $0.5 \%=$ \qquad
c) $10 \%=$ \qquad f) $1.25 \%=$ \qquad
6. Express each decimal as a fraction and a percent.
a) $0.73=$ \qquad d) $0.025=$ \qquad
b) $0.9=$ \qquad e) $0.375=$ \qquad
c) $0.02=$ \qquad f) $0.001=$ \qquad
7. Calculate the number of students in each part.
a) 1% of 200 students have red hair.
\qquad $\times 200=$ \qquad students with red hair
b) 40% of 420 students are girls.

$$
\ldots \times 420=\ldots \text { girls }
$$

c) 12.5% of 56 students have blond hair.
\qquad $\times 56=$ \qquad students with blond hair

Hint
0.5% is 0.5 out of 100 , so 0.5 of a square would be shaded on a hundreds grid.
That's half a square.

Hint

Express the decimal as a fraction with a denominator of 100. When necessary, write the numerator as a decimal.

Hint

In these calculations, "of" means multiply. Express the percent as a decimal and multiply.

Linear Measurement

Using Mental Math to Multiply or Divide by a Power of 10

When multiplying, the exponent on the power of 10 tells the number of places to move each digit to the left.
For example,

$$
2.5 \times 10^{0}=2.5
$$

$2.5 \times 10^{1}=25$
$2.5 \times 10^{2}=250$
$2.5 \times 10^{3}=2500$

1. Calculate.
a) $2.5 \times 10^{2}=$ \qquad
b) $78.26 \times 10^{2}=$ \qquad
c) $4.09 \times 10^{3}=$ \qquad
d) $0.006 \times 10^{3}=$

When dividing, the exponent on the power of 10 tells the number of places to move each digit to the right.
For example,

$$
9.8 \div 10^{0}=9.8
$$

$9.8 \div 10^{1}=0.98$
$9.8 \div 10^{2}=0.098$
$9.8 \div 10^{3}=0.0098$
2. Calculate.
a) $0.85 \div 10^{1}=$ \qquad
b) $982.6 \div 10^{2}=$ \qquad
c) $1760 \div 10^{3}=$ \qquad
d) $4.33 \div 10^{3}=$ \qquad

Using Metric Measurements for Length

The most common units for length are metre (m), kilometre (km), centimetre (cm), and millimetre (mm). The prefix on each unit name tells how it relates to the base unit, metre.
3. a) "Kilo" means thousand. This means $1 \mathrm{~km}=$ \qquad m.
b) "Centi" means hundredth. This means $1 \mathrm{~cm}=$ \qquad m.
c) "Milli" means thousandth. This means $1 \mathrm{~mm}=$ \qquad m.
4. Complete each relationship.
a) $10 \mathrm{~km}=$ \qquad m
$0.1 \mathrm{~km}=$ \qquad m
b) $10 \mathrm{~cm}=$ \qquad m
$100 \mathrm{~cm}=$ \qquad m
c) $10 \mathrm{~mm}=$ \qquad m
$1000 \mathrm{~mm}=$ \qquad m
5. Complete the tables. Use patterns to help you.
a)

$\mathbf{k m}$	\mathbf{m}
1	
2	
3	

b)

$\mathbf{c m}$	\mathbf{m}
1	
2	
3	

C)

\mathbf{m}	$\mathbf{c m}$
1	
2	
3	

d)

m	mm
1	
2	
3	

6. Complete each relationship. Use the ruler below to help you.
a) $1 \mathrm{~cm}=$ \qquad mm
c) $20 \mathrm{~mm}=$ \qquad cm
b) $2.5 \mathrm{~cm}=$ \qquad mm
d) $13 \mathrm{~mm}=$ \qquad cm

$\begin{aligned} & 0 \\ & \mathrm{~cm} \end{aligned}$	1	2	3	4	5	6	7	8	9	10	11	12	1

7. Kyle measured a can: diameter (distance across end) $=67 \mathrm{~mm}$ circumference (distance around) $=21.0 \mathrm{~cm}$.
a) Express both measurements in millimetres.
\qquad mm \qquad mm
b) Express both measurements in centimetres.
\qquad cm \qquad cm

Working with Fractions

8. Calculate.
a) $\frac{1}{3} \times 12=$ \qquad c) $\frac{5}{8} \times 16=$ \qquad
b) $\frac{3}{4} \times 36=$ \qquad d) $\frac{2}{5} \times 100=$ \qquad

Hint

To multiply fractions, multiply the numerators and then multiply the denominators.
Remember, a whole number has a denominator of 1 .
9. Complete each pair of equivalent fractions.
a) $\frac{4}{3}=\frac{\square}{15}$
$\times 5$
c) $\frac{36}{24}=\frac{\square}{\square} \frac{\square}{2}$
b)

d)

In the metric system, a measurement is written using a decimal for part of a unit. In the imperial system a measurement is usually written using a fraction for part of a unit.

Measurement Problems

Solving Equations

A variable is a letter or symbol, such as a, x, T, or Z, that represents a number. To figure out the value of a variable, perform the same operation to both sides of the equation until the variable is alone on one side. Simplify the other side.

1. Solve for d in the equation $d=2 r$ when $r=3.5$.
$d=2 r$
$d=2 \times 3.5$
$d=$ \qquad
2. Solve for r in the equation $d=2 r$ when $d=17$.
$d=2 r$
$17=2 r \quad$ (Divide both sides by 2.)
$17 \div 2=2 r \div 2$
\qquad $=r$
3. Calculate the perimeter, area, or circumference.

a) $P=2(I+w)$. Solve for P if $I=5 \mathrm{~cm}$ and $w=2 \mathrm{~cm}$.
$P=$ \qquad cm
b) $A=I \times w$. Solve for A if $I=7 \mathrm{~cm}$ and $w=4 \mathrm{~cm}$. $A=$ \qquad cm^{2}
c) $A=I \times w$. Solve for w if $A=54 \mathrm{~m}^{2}$ and $I=9 \mathrm{~m}$. $w=$ \qquad m
d) $C=\pi \times d$. Solve for C if $d=5 \mathrm{~mm}$. (Use $\pi=3.14$.) $C \doteq$ \qquad mm
e) $C=\pi \times d$. Solve for d if $C=31.4 \mathrm{~cm}$. (Use $\pi=3.14$.) $d \doteq$ \qquad cm

In Question 4, P represents the perimeter of a rectangle, A represents the area of a rectangle, and C represents the circumference of a circle. π (pi) is not a variable. Its value is about 3.14.
4. Britney's ruler measures both inches and centimetres. It shows that 12 in . is about the same length as 30.5 cm .
a) How many inches are in 1 cm ?

$1 \mathrm{~cm} \doteq$ \qquad in.
b) How many centimetres are in 1 in.?

$1 \mathrm{in} . \doteq$ \qquad cm

Working with Fractions

- To add or subtract fractions with unlike denominators, create equivalent fractions with a common denominator and then add the numerators, or subtract one numerator from the other.

$$
\frac{7}{10}+\frac{1}{4}=\frac{14}{20}+\frac{5}{20}=\frac{19}{20} \quad \frac{2}{3}-\frac{1}{2}=\frac{4}{6}-\frac{3}{6}=\frac{1}{6}
$$

5. a) $\frac{3}{4}+3 \frac{5}{8}=$
c) $1 \frac{5}{16}-\frac{3}{4}=$ \qquad
b) $2 \frac{1}{4}+\frac{2}{3}=$ \qquad d) $2 \frac{3}{4}-\frac{2}{3}=$ \qquad

- To multiply fractions, multiply the numerators and then multiply the denominators. For example: $\frac{1}{4} \times \frac{2}{3}=\frac{2}{12}$ or $\frac{1}{6}$

6. a) $\frac{1}{4} \times \frac{2}{3}=$ \qquad c) $\frac{3}{4} \times 3 \frac{1}{2}=$ \qquad
b) $\frac{7}{8} \times \frac{2}{3}=$ \qquad d) $2 \frac{5}{8} \times 1 \frac{2}{3}=$ \qquad

- To divide fractions, multiply the first fraction by the reciprocal of the divisor. For example: $\frac{1}{4} \div \frac{1}{2}=\frac{1}{4} \times \frac{2}{1}=\frac{2}{4}$ or $\frac{1}{2}$

Hint

You may not need to rewrite mixed numbers as improper fractions to add or subtract. For example:

$$
\begin{aligned}
3 \frac{1}{2}-1 \frac{1}{4} & =3 \frac{2}{4}-1 \frac{1}{4} \\
& =2 \frac{1}{4}
\end{aligned}
$$

Hint

To multiply or divide mixed numbers, first rewrite them as improper fractions.

$$
\begin{aligned}
2 \frac{1}{2} \times 1 \frac{3}{4} & =\frac{5}{2} \times \frac{7}{4} \\
& =\frac{35}{8} \text { or } 4 \frac{3}{8}
\end{aligned}
$$

7. a) $\frac{3}{4} \div \frac{2}{3}=$
c) $1 \frac{5}{8} \div \frac{1}{8}=$ \qquad
b) $\frac{3}{4} \div \frac{1}{4}=$ \qquad d) $2 \frac{1}{2} \div 1 \frac{1}{4}=$

Area Measurement

Area of a Square

- When the length of a side is known, the area can be calculated using the formula Area of a square $=$ side \times side, or (side) ${ }^{2}$.

1. Determine the area of each square.
a)

Area of square J
b)

$$
\begin{aligned}
& =3 \mathrm{~cm} \times 3 \mathrm{~cm} \\
& =\quad \quad \mathrm{cm}^{2}
\end{aligned}
$$

Area of square K
$=$ \qquad m^{2}

- When the area of a square is known, the square root of the area is the length of each side.

2. Determine the side length of each square.
a)

b)
M
Area $=36 \mathrm{~cm}^{2}$ m

$$
\begin{array}{r}
81 \mathrm{~m}^{2}=\square \mathrm{m} \times \square \mathrm{m} \\
\text { side length } \\
=\sqrt{81 \mathrm{~m}^{2}} \\
=
\end{array}
$$

Area of Other 2-D Shapes

To calculate the area of a shape, substitute the linear measurements of the shape into the appropriate formula.

- Area of a parallelogram $=$ base \times height
- Area of a rectangle $=$ base \times height (or length \times width)
- Area of a triangle $=\frac{1}{2}$ (base \times height) or $\frac{\text { base } \times \text { height }}{2}$
- Area of a circle $=\pi \times \mathrm{r}^{2}$

3. Determine the area.

Hint

The formula for the area of a rectangle is the same as for a parallelogram because a rectangle is a type of parallelogram.

4 cm
4. Surface area of cube $T=6 \times 16 \mathrm{~cm}^{2}=$ \qquad cm^{2}
5. Calculate the surface area of cylinder U. Use the net.

Hint
The curved surface is a rectangle, with a width of 6 cm and a length that equals the circumference of the circle.

Area of 2 circular ends:	Area of curved surface:

Total area $=$ \qquad $\mathrm{cm}^{2}+$ \qquad $\mathrm{cm}^{2}=$ \qquad cm ${ }^{2}$

Capacity, Volume, Mass, and Temperature

Using Metric Measurements for Capacity

Capacity is a measure of the amount a container can hold. Common units are litre (L) and millilitre (mL). The base unit is the litre.

1. Complete each relationship.
(Remember, "milli" means thousandth.)
$\begin{array}{ll}1 \mathrm{~mL}=_\mathrm{L} & 100 \mathrm{~mL}=\quad \mathrm{L} \\ 10 \mathrm{~mL}=\left[\begin{array}{l}\mathrm{L}\end{array}\right. & 1000 \mathrm{~mL}=\quad \mathrm{L}\end{array}$

Using Metric Measurements for Volume

Volume is a measure of the amount of space occupied by a $3-\mathrm{D}$ object. The base unit is cubic metre $\left(\mathrm{m}^{3}\right)$. A cube that is $1 \mathrm{~m} \times 1 \mathrm{~m} \times 1 \mathrm{~m}$ has a volume of $1 \mathrm{~m}^{3}$. Smaller volumes are measured in cubic centimetres (cm^{3}), and very small volumes in cubic millimetres $\left(\mathrm{mm}^{3}\right)$.
2. Complete each relationship.
(Remember, "centi" means hundredth.)
$1 \mathrm{~cm}^{3}$
$=1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 1 \mathrm{~cm}$
$=0.01 \mathrm{~m} \times 0.01 \mathrm{~m} \times 0.01 \mathrm{~m}$
$=$ \qquad m^{3}
$1 \mathrm{~mm}^{3}$
$=1 \mathrm{~mm} \times 1 \mathrm{~mm} \times 1 \mathrm{~mm}$
$=0.1 \mathrm{~cm} \times 0.1 \mathrm{~cm} \times 0.1 \mathrm{~cm}$
$=$ \qquad cm ${ }^{3}$

Using Metric Measurements for Mass

Mass is a measure of the amount of matter in an object.
Common units are gram (g), kilogram (kg), and milligram (mg).
The base unit is the gram.
3. Complete each relationship.

A raisin has a mass of about 1 g . A bag of 1000 raisins has a mass of about 1 kg .
(Remember, "kilo" means thousand.)
$1 \mathrm{~kg}=$ \qquad g
$1 \mathrm{mg}=$ \qquad g
$10 \mathrm{~kg}=$ \qquad g
$10 \mathrm{mg}=$ \qquad g
$0.1 \mathrm{~kg}=$ \qquad g
$100 \mathrm{mg}=$ \qquad g

A regular tube of toothpaste holds about 130 mL . The small amount of toothpaste you squeeze onto your toothbrush is about 1 mL .

A refrigerator packing crate has a volume of about $1 \mathrm{~m}^{3}$.
A regular marble has a volume of about $1 \mathrm{~cm}^{3}$.
4. Complete the tables. Identify patterns to help you.
a)

$\mathbf{k g}$	\mathbf{g}
1	
2	
3	
4	

b)

\mathbf{g}	$\mathbf{k g}$
1	
2	
3	
4	

c)

mg	g
1	
2	
3	
4	

d)

\mathbf{g}	mg
1	
2	
3	
4	

Working with Fractions

5. Express each fraction as a decimal.
a) $\frac{1}{2} \mathrm{in}$. $=$ \qquad in.
c) $\frac{1}{8} \mathrm{in}$. $=$ \qquad in.
b) $\frac{3}{4}$ in. $=$ \qquad in.
d) $\frac{5}{8}$ in. $=$ \qquad in.
6. Solve for y in the equation $y=\frac{9}{5} x+32$ when $x=25$. $y=$ \qquad

Working with Integers

- The opposite of an integer is the number that is the same distance from 0 on the number line, but in the opposite direction. The opposite of +4 is -4 .

Tech 1

To enter a negative integer on a calculator, the key might be (-) or + -

- To subtract integers, you can add the opposite. For example,

$$
\begin{aligned}
-10-(-4) & =-10+4 \\
& =-6
\end{aligned}
$$

7. Calculate.
a) $9-(-2)=$ \qquad c) $-6-(-14)=$ \qquad
b) $-8-(+13)=$ \qquad d) $12-(-3)=$ \qquad
8. Solve for y in the equation $y=\frac{5}{9}(x-32)$ when $x=41$.

Hint
Substitute the value of x into the equation.

Working with Money

Working with Decimals

1. Round each amount to the nearest dollar.
a) $\$ 1.95$ is about $\$$
c) $\$ 12.84$ is about $\$$ \qquad
b) $\$ 6.02$ is about $\$$ \qquad
d) $\$ 39.99$ is about $\$$ \qquad
2. Use mental math to estimate each amount to the nearest dollar.
a) $\frac{1}{4}$ of $\$ 39.99$ is about $\$$ \qquad
b) $\frac{3}{4}$ of $\$ 39.99$ is about $\$$ \qquad
c) $\frac{1}{3}$ of $\$ 11.99$ is about $\$$ \qquad
d) $\frac{2}{3}$ of $\$ 11.99$ is about $\$$ \qquad
e) $\frac{1}{2}$ of $\$ 27.99$ is about $\$$ \qquad
f) $\frac{1}{5}$ of $\$ 99.99$ is about $\$$ \qquad
3. Calculate.
a) $\frac{1}{4}$ of $\$ 28.99=\$$
d) $\frac{2}{3}$ of $\$ 16.00=\$$ \qquad
b) $\frac{3}{4}$ of $\$ 28.99=\$$
e) $\frac{1}{2}$ of $\$ 28.99=\$$ \qquad
c) $\frac{1}{3}$ of $\$ 15.50=\$$ \qquad
f) $\frac{1}{5}$ of $\$ 28.99=\$$

Hint

Round your answers to the nearest cent after doing the calculations.

Working with Percents

4. Express each fraction as a percent and as a decimal.
a) $\frac{17}{100}=$ \qquad c) $\frac{3}{100}=$ \qquad
b) $\frac{85}{100}=$ \qquad d) $\frac{101}{100}=$ \qquad

You can express fractions as percents when the denominator is not 100. Identify an equivalent fraction with a denominator of 100.
For example: $\frac{4}{25}=\frac{16}{100}=16 \%$
5. Express each fraction as a percent and as a decimal.
a) $\frac{17}{20}=\frac{\square}{100}$

Percent: \qquad Decimal: \qquad
b) $\frac{15}{1000}=\frac{\square}{100}$

Percent: \qquad Decimal: \qquad
c) $\frac{26}{25}=\frac{\square}{100}$

Percent: \qquad Decimal: \qquad
6. Express each fraction as a percent. Round to the nearest tenth.
a) $\frac{1}{8}=$
c) $\frac{4}{3}=$ \qquad
b) $\frac{1}{3}=$ \qquad d) $\frac{7}{9}=$ \qquad
7. Calculate each amount.
a) The sale price is 75% of $\$ 50$.
c) The discount is 12% of $\$ 6$.
b) The tip is about 15% of $\$ 96.40$.
d) The new price is 125% of \$54.

Hint
In this question, "of" means multiply.
8. Use mental math to calculate.
a) 10% of $\$ 4=\$$ \qquad c) 10% of $\$ 68=\$$ \qquad
b) 10% of $\$ 25.50=\$$
d) 5% of $\$ 68=\$$ \qquad
9. Estimate.
a) 15% tip for a $\$ 29.95$ meal is about $\$$
b) 15% tip for a $\$ 75$ haircut is about $\$$
\qquad
\qquad

Lines and Angles

Angle Measures

Use a protractor to measure angles in degrees．Place the zero line of the protractor along one arm of the angle so that the centre is over the vertex．Read the measure of the angle from the protractor．

Hint
An arc can be used to identify the angle you want to measure．

1．Use a protractor to measure each angle．
a）

\qquad
b）

\qquad

2．In each angle in Question 1，extend one arm through the vertex．What are the measures of the other angles around the vertex？

Hint
Hint
If necessary， extend the arms so that you can measure an angle accurately．

There are 360° around the centre in a circle．
a） \qquad。 \qquad。
b） \qquad。 \qquad
3. How many right angles are in a straight angle?
Tell how you know.
\qquad
\qquad
\qquad

Angle measurement	Name of angle
90°	right
180°	straight
less than 90°	acute
between 90° and 180°	obtuse
between 180° and 360°	reflex

4. Use the protractor diagram from page 13.
a) What is the measure of the acute angle? \qquad。
b) What is the measure of the reflex angle? \qquad

Perpendicular and Parallel Lines

- Lines or line segments are perpendicular if they intersect to form a right angle. To show perpendicular lines in a diagram, mark the corner with a small square.

- Lines or line segments are parallel if they are always the same distance apart. This means they will never intersect. To show parallel lines in a diagram, mark the lines with matching arrowheads.

5. Most of the line segments in this picture are horizontal or vertical.
a) Which line segments are parallel? Circle the true statements.

- the horizontal line segments are parallel to each other
- the vertical line segments are parallel to each other
- the vertical line segments are parallel to the horizontal line segments
b) Mark the parallel line segments using matching arrowheads.
c) Mark the perpendicular line segments using square corners.

Relationships in Right Triangles

Right Triangles

A right triangle has one right angle. As in all triangles, the sum of its three angles is 180°.

1. What is the measure of each angle marked with an arc?
a)

e)

\qquad

-

b)

f)

\qquad
\circ
$\underbrace{\circ}$
\circ
c)

\qquad
g)

\qquad
d)

h)

\qquad \circ

2. Which of the triangles in Question 1 are right triangles?

Tell how you know.

Squares and Square Roots

- To square a number, multiply the number by itself.

For example: $92=9 \times 9$ or 81
$(0.2)^{2}=0.2 \times 0.2$ or 0.04
3. What is the square of each number?
a) $8^{2}=$ \qquad d) $0.4^{2}=$
b) $13^{2}=$ \qquad e) $10.05^{2}=$ \qquad
c) $2.5^{2}=$ \qquad f) $(100+20)^{2}=$ \qquad

- To determine the square root of a number, figure out what number when multiplied by itself gives the original number.
For example: $\sqrt{9}=3$ because $3^{2}=9$
$\sqrt{0.64}=0.8$ because $(0.8)^{2}=0.64$
Square roots may not be exact numbers.
Estimate: $\sqrt{101} \doteq 10$ because $10^{2}=100$
Use a calculator: $\sqrt{101}=10.0498 \ldots$

4. Calculate each square root.
a) $\sqrt{49}=$ \qquad
d) $\sqrt{0.1}=$
b) $\sqrt{0.16}=$ \qquad
e) $\sqrt{13^{2}}=$ \qquad
c) $\sqrt{30}=$ \qquad
f) $\sqrt{(36+25)}=$ \qquad

Do operations inside the square root symbol first.
5. Solve for the variable.
a) If $c^{2}=25$, what is the value of $c ? \quad c=$ \qquad
b) If $x^{2}=50$, what is the value of $x ? \quad x=$ \qquad
6. Compare the left side with the right side. Write $=$ or \neq.
a) $2^{2}+4^{2} \square 6^{2}$
b) $7^{2} \square 8^{2}-6^{2}$
c) $50^{2} \square 30^{2}+40^{2}$
d) $5^{2}-3^{2} \square(5-3)^{2}$

Hint

An important relationship among the lengths of the sides in a right triangle is the Pythagorean theorem.
$a^{2}+b^{2}=c^{2}$

Similar Polygons

Ratios

A ratio is a comparison of numbers or quantities. You can express a ratio in different ways. For example, the ratio of circles to squares can be written as $4: 1$, or 4 to 1 , or $\frac{4}{1}$.

A ratio of "part" to "total" works like a fraction. It can be expressed as a percent. For example, the ratio of circles to total shapes is $4: 5$, or 4 to 5 , or $\frac{4}{5}$, which is $\frac{80}{100}$ or 80%.

1. Write each ratio that compares the numbers of triangles. Express the result in simplest terms.

a) grey triangles to black triangles \qquad : \qquad
b) grey triangles to total triangles \qquad : \qquad
c) What percent of all the triangles are grey? \qquad \%
2. Circle the ratios that are equivalent to $4: 32$.
4:8
1:16
2:16
1:8
3. Circle the ratios that are equivalent to $25: 5$.
5:1
75:15
50:10
10:50
4. Circle the ratios that are equivalent to 60%.
60:100
10:50
30:50
3:5
5. Solve each equation.
a) $\frac{1}{2}=\frac{\square}{8}$
b) $\frac{3}{4}=\frac{\square}{16}$
c) $\frac{14}{\square}=\frac{7}{8}$
d) $\frac{5}{6}=\frac{\square}{1.8}$
6. A photograph measures 4 in . by 6 in . Complete the ratio table below to show the measurements when the photo is enlarged.

Base (in.)	4	6	8	10	12	20
Height (in.)	6		12			

7. A 4 in.-by-5 in. photo can be reduced to a wallet-sized photo
 with a height of $3 \frac{1}{8} \mathrm{in}$.
a) Express the height of the smaller photo as a decimal.
\qquad in.
b) Solve the equation to determine the length of the wallet-sized photo.

$$
\frac{4 \mathrm{in} .}{5 \mathrm{in} .}=\frac{\square \mathrm{in} .}{3.125 \mathrm{in} .}
$$

Measuring Lengths and Angles

8. Use a protractor and a centimetre ruler to measure.
a) Measure and label the side lengths and angle measures of the triangle below.
b) Beside the triangle, draw a longer line that is parallel to one of the sides.
c) Repeat step b) for the other sides so that the three lines form a larger triangle.
d) Measure and label the side lengths and angle measures of the larger triangle.

Transformations

Plotting Points on a Grid

The point where the x-axis and y-axis cross is the origin and has the coordinates (0,0). To plot a point, start at the origin and move to the right (for a positive value) or left (for a negative value) along the x-axis. Then move up (for a positive value) or down (for a negative value) along the y-axis.
For example, to plot ($5,-2$), first count
 over 5 to the right along the x-axis, and then count down 2 along the y-axis. Label the point.

1. Plot $A(-2,3)$ and $B(-3,-5)$ on the grid. Join the points to form line segment $A B$.

Translations

A translation is a transformation that slides a figure right, left, up, or down. The figure does not change its shape or size or orientation.
2. Use the grid in Question 1. Draw and label the image of $A B$ after it has been translated right 5, up 2.

Reflections

A reflection is a transformation that flips a figure across a line. Each point on the image is the same distance from the line of reflection as the corresponding point on the original image. For example, triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of triangle $A B C$ after it is reflected across the y-axis.

It is common to name an image of a figure using a prime symbol (${ }^{\prime}$). For example, the image of A is A^{\prime}.
3. Reflect figure $A B C D$ across the x-axis. Draw and label the image.

Rotations

A rotation is a transformation that turns a figure around a central point. The distance from the central point to any point on the figure remains the same. For example, triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of triangle $A B C$ after it has been rotated 90° counterclockwise around the origin, $(0,0)$.

4. Which figure below is the image of triangle $X Y Z$ after it has been rotated 90° clockwise?

