Slope and Rates

Relating Decimals, Percents, and Fractions

1. Complete each row in the chart by expressing the same number in different ways.

Decimal	Percent	Fraction in lowest terms
0.75	75%	$\frac{75}{100}=\frac{75 \div 25}{100 \div 25}$ $=\frac{3}{4}$
0.4		
	60%	
		$\frac{1}{8}$

Writing Ratios in Lowest Terms

A ratio compares two numbers. A ratio is in lowest terms if the numbers have no common factors.
$14: 35$ is not in lowest terms because 7 is a factor of both numbers.
$14 \div 7=\mathbf{2}$ and $35 \div 7=\mathbf{5}$
$14: 35=\mathbf{2 : 5}$, in lowest terms
2. Write each ratio in lowest terms.
a) $20: 15=4: \square$
d) $12: 36=$ \qquad
b) $3: 18=$ \qquad e) $16: 40=$ \qquad
c) $50: 40=$ \qquad f) $42: 24=$ \qquad

Converting Measurements

3. a) $2.5 \mathrm{~h}=$ \qquad min
c) $8 \mathrm{yd}=$ \qquad ft
b) $2.1 \mathrm{~km}=$ \qquad m
d) $0.2 \mathrm{~L}=$ \qquad mL

Hint

Use the charts inside the back cover of the Workbook.

Working with Integers

- Sometimes, it helps to think about what the operation means.
$3 \times(-4)$ means " 3 groups of (-4)."
$3 \times(-4)=-12$
- Sometimes, it helps to think about opposites.
$10 \div 5=2$, so $10 \div(-5)$ must be the opposite.
$10 \div(-5)=-2$

Hint

- Sometimes, it helps to think about the related operation.

For $-14 \div(-2)$, think about the related multiplication.
$7 \times(-2)=-14$, so $-14 \div(-2)=7$
4. Multiply or divide.
a) $6 \times(-3)=$ \qquad d) $-24 \div 8=$ \qquad
b) $-4 \times 8=$ \qquad
e) $30 \div(-5)=$ \qquad
c) $-6 \times(-7)=$ \qquad
f) $-27 \div(-3)=$ \qquad

Think of a number line to subtract with integers.

5. Subtract.
a) $12-8=$ \qquad
d) $4-(-3)=$ \qquad
b) $3-6=$ \qquad
e) $-10-(-6)=$ \qquad
c) $-5-8=$ \qquad f) $-12-(-15)=$ \qquad

Calculating Tangents

6. Calculate the tangent for each angle of elevation.
a)

$\tan x^{\circ}=$ \qquad
b)

$\tan t^{\circ}=$ \qquad

$$
\begin{gathered}
\text { Hint } \\
\tan A^{\circ}=\frac{\text { opposite }}{\text { adjacent }} \\
\text { hypotenuse } \\
\text { adjacent to } \angle \mathrm{A}
\end{gathered}
$$

