9 Solving Right Triangle Problems

Using the Pythagorean Theorem

Apprenticeship and Workplace 11: Review of Essential Skills 18

Using Trigonometric Ratios

Trigonometric ratios work for right triangles. You can use trigonometric ratios to calculate side lengths and angle measures.

- In the triangle above, $\angle A$ is 25°.
- $\angle B$ must be 65° since 25° + 90° + 65° = 180°.
- Every right triangle with a 25° angle has the same angles.
- Triangles with the same angles are similar.
- Similar triangles have the same side: side ratios.
- **2.** a) Use side lengths to calculate each ratio in the chart below for the triangle at the right. Answer to four decimal places.
 - **b)** Calculate each ratio using the trig function keys on a calculator. Do your answers match?

Ratio	a) Using side lengths	b) Using a calculator
$\sin 35^\circ = rac{opposite}{hypotenuse}$	$\frac{7.0}{12.2}$ ft = ft	sin 35° =
$\cos 35^\circ = rac{adjacent}{hypotenuse}$		
$\tan 35^\circ = \frac{\text{opposite}}{\text{adjacent}}$		

Tech Tip

Inverse Trig Functions

The \sin^{-1} , \cos^{-1} ,

and tan⁻¹ keys are called inverse trig functions.

- 3. a) Use a calculator. Enter the tangent of 35° that you calculated for Question 2. Then press tan⁻¹. What does your calculator show, to the nearest whole number?
 - **b)** What does this number tell you about the triangle?

